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A two-dimensional disturbance evolving from a strictly linear, finite-growth-rate 
instability wave with nonlinear effects first becoming important in the critical layer 
is considered. The analysis is carried out for a general weakly non-parallel mean flow 
using matched asymptotic expansions. The flow in the critical layer is governed by 
a nonlinear vorticity equation which includes a spatial-evolution term. As in 
Goldstein & Hultgren (1988), the critical layer ages into a quasi-equilibrium one and 
the initial exponential growth of the instability wave is converted into a weak 
algebraic growth during the roll-up process. This leads to a next stage of evolution 
where the instability-wave growth is simultaneously affected by mean-flow 
divergence and nonlinear critical-layer effects and is eventually converted to decay. 
Expansions for the various streamwise regions of the flow are combined into a single 
composite formula accounting for both shear-layer spreading and nonlinear critical- 
layer effects and good agreement with the experimental results of Thomas & Chu 
(1989), Freymuth (1966), and C.-M. Ho & Y. Zohar (1989, private communication) 
is demonstrated. 

1. Introduction 
Low-level external harmonic forcing of free shear layers between parallel streams 

produces spatially growing instability waves that are initially governed by linear 
dynamics. The local (linear) growth rate will ultimately be reduced, however, owing 
to the slow viscous spreading of the mean shear layer, and nonlinear effects can then 
first become important in a critical layer located at the transverse position where the 
phase velocity of the instability wave equals the mean velocity. In this situation, the 
perturbation flow outside the critical layer is essentially linear, but with the external 
instability-wave amplitude completely controlled by the critical-layer dynamics. 

Goldstein & Leib (1988) (hereafter referred to as I) considered the case where the 
critical-layer balance is between spatial-evolution, linear- and nonlinear-convection 
terms, i.e. the nonlinearity can be characterized as strong but localized in the 
transverse coordinate. The presence of the spatial-evolution term in this balance 
means that the critical layer is an ‘unsteady’ one but with a slow streamwise 
coordinate in place of time. It will be referred to (as in I) as a non-equilibrium critical 
layer, however, in order to avoid any connotation of temporal evolution. This type 
of nonlinear critical layer occurs at the downstream position where the local linear 
growth rate is O(&), where E is a measure of the local instability-wave amplitude. Its 
solution matches (in the matched asymptotics sense) onto the upstream finite- 
growth-rate, weakly non-parallel, linear instability wave, i.e. the proper initial (or 
upstream) conditions are applied in the nonlinear critical-layer theory. In I it was 
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assumed that the local Reynolds number R was large enough that viscous effects, 
including mean-flow spreading, could be ignored in the nonlinear (streamwise) 
region. Goldstein & Hultgren (1988) (hereafter referred to as 11) incorporated a small 
amount of viscosity into the analysis of I. The local Reynolds number R was assumed 
to be O(&) so that the viscous-diffusion term is of the same order of magnitude as 
the terms in the nonlinear critical-layer vorticity equation used in I. The relative 
importance of viscous to nonlinear cffects in the critical layer is then determined by 
the parameter A = l /e%R, while viscous effects play a purely passive role outside the 
critical layer. Their computations showed the vorticity roll-up to be initially similar 
to the inviscid calculations of I. However, once the nonlinear effects had generated 
sufficiently small scales, viscous effects asserted themselves and caused the vorticity 
distribution to diffuse into a simpler pattern more characteristic of an equilibrium 
critical layer. Their results also showed that viscosity keeps the nonlinear effects 
from driving the critical-layer phase jump, and thereby the local growth rate, to zero 
and hence allows the instability wave to continue its growth asymptotically far 
downstream. This produces an unbounded increase of the nonlinear terms in the 
critical-layer vorticity equation so that a new dominant critical-layer balance 
between linear and nonlinear convection terms is eventually achieved. This is 
analogous to  the situation that was analysed by Benney & Bergeron (1969), but the 
specific asymptotic solution obtained in I1 turned out to be somewhat different and, 
in particular, has variable vorticity in the closed streamline region within the cat’s- 
eye boundary. 

It may a t  first seem surprising that no matter how large h the problem in I1 
becomes nonlinear sufficiently far downstream. This can be understood by realizing 
that the initial linear growth rate in the critical layer is independent of h and that 
the growth rate is then rapidly reduced by nonlinear effects. A larger value of h 
simply means that the growth rate is not reduced quite as fast because the relatively 
stronger viscous effects in a sense keep the problem linear for a longer streamwise 
distance. The instability wave can therefore, through continued growth, achieve the 
larger amplitude necessary for nonlinear effects now to come into play. 

It was also shown in I1 that the initial exponential growth of the linear instability 
wave is converted into a weak algebraic growth as the critical layer ages into a quasi- 
equilibrium one and that this allows mean-flow divergence effccts to alter the critical- 
layer structure before the instability wave achieves an O( 1 )  amplitude. It was found 
that the critical level moves a small distance across the shear layer in this next stage 
of evolution to maintain the quasi-equilibrium state against changes in mean flow 
and that the resulting instability-wave growth, therefore, is simultaneously affected 
by mean-flow divergence and nonlinear critical-layer effects. The growth rate goes to 
zero a t  the linear neutral point and the instability wave then begins to decay. The 
flow structure is shown schematically in figure 1 (reproduced from 11). 

The purpose of the present investigation is threefold. First, the analysis of 11, 
which was restricted to  a hyperbolic-tangent mean-velocity profile, is generalized to 
an arbitrary mean flow. This is accomplished in $32 and 3. In $2, the nonlinear non- 
equilibrium critical-layer vorticity equation is derived and it is shown in Appendix 
C how the general problem can be transformed to the (now generic) problem studied 
in 11. The next stage of evolution, where mean-flow divergence and nonlinear critical- 
layer effects both influence the evolution of the instability wave, is analysed in $3. 
Second, in $4, the streamwise composite solution introduced in I (formed from a 
weakly non-parallel linear solution valid on the slow mean-flow viscous spreading 
scale and the nonlinear critical-layer solution) is gcneralized to  include viscosity and 
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FIQURE 1 .  Flow structure (Goldstein & Hultgren 1988). 

to be valid for a general velocity profile. It is found that the composite solution 
contains the next stage of evolution and, thus, is valid up to, and some distance 
beyond, the linear neutral point. The third, and perhaps most important, purpose of 
this paper is to make a first-principles comparison of results obtained by this type of 
asymptotic/numerical analysis with experiments. In  a sense, the previously stated 
two purposes are simply prerequisites for this. The uniformly valid composite 
solution is shown in $ 5  to be in very good agreement with experimental results for 
a plane-jet shear layer (Thomas & Chu 1989), a circular-jet shear layer (Freymuth 
1966), and a mixing layer behind a splitter plate (C.-M. Ho & Y. Zohar 1989, private 
communication). 

2. Formulation of the nonlinear non-equilibrium critical-layer problem 
As in I and 11, consider a two-dimensional, incompressible and almost inviscid 

shear layer between two parallel streams with nominally uniform velocities U,, > U,, 
(the star is used to  denote dimensional quantities). In  particular, consider the 
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streamwise region where nonlinear effects have become important, cf. figure 1. The 
streamwise and transverse coordinates x and y, the time t ,  and all velocities are non- 
dimensionalized by L,,, Lv./UA., and UA., respectively, where 

is the vorticity thickness of the unexcited shear layer at a typical streamwise 
location, say x = 0, just upstream of the nonlinear region, and U,, = t(U,.  + U2.) is 
the average velocity of the streams. The origin of the y-coordinate is taken to be a t  
the inflexion point of the undisturbed mean flow a t  x = 0. 

The mean-flow Reynolds number, R = L,, UA,/v ,  where v is the kinematic 
viscosity, is assumed large enough that the mean flow is nearly parallel and the shear- 
layer width (at  least initially) increases only slowly over the long viscous scale 

x3 = x/R.  ( 2 . 1 )  

Upstream of the nonlinear region, the mean flow is essentially unaffected by the 
linear instability wave and its streamwise evolution can be determined from the 
laminar boundary-layer equation. I n  the same region, the instability wave can be 
described by inviscid, weakly non-parallel, linear stability theory and, assuming that 
it remains sufficiently small, its amplitude grows in the streamwise direction until, 
owing to  the viscous mean-flow spreading, neutral stability is approached. As the 
local linear growth rate tends to zero, the leading-order inviscid stability problem 
becomes singular at the critical level, i.e. a t  the transverse location where the phase 
velocity of the instability wave equals the mean flow. This is indicative of a non- 
uniformity in the perturbation vorticity and that now the dynamics essentially is 
determined in a small transverse region. In this critical layer, the linear mean-flow 
convection of the perturbation vorticity can be balanced by spatial evolution 
(growth), viscous, or nonlinear effects, or a combination thereof. By themselves, 
these three possibilities would lead to an inviscid linear non-equilibrium critical layer 
with a thickness of the order of the small but non-zero growth rate, a viscous linear 
equilibrium critical layer of thickness O(R-i), or an inviscid nonlinear equilibrium 
critical layer of thickness O(&, respectively, where E is a measure of the local 
instability-wave amplitude. As first shown in I,  the requirement that the near- 
neutral nonlinear solution matches onto the upstream strictly linear, finite-growth- 
rate instability wave implies that  the linear growth rate at the beginning of the 
nonlinear region must be O(&. This scaling represents a distinguished limit that 
allows both spatial evolution and nonlinear effects to enter the critical-layer vorticity 
balance and has a linear non-equilibrium critical-layer region (cf. figure 1)  as an 
overlap domain between the upstream finite-growth-rate linear region and the near- 
neutral nonlinear region. Consequently, i t  is assumed that in the nonlinear 
streamwise region 

where S = we. L,,/U,, is the local Strouhal number, So = a. U, is its local neutral 
value based on linear inviscid parallel-flow stability theory, we+ is the excitation 
angular frequency, a,, is the local neutral wavenumber and U, is the velocity a t  the 
inflexion point of the undisturbed mean flow at  x = 0. So and S ,  are taken to be 
constant a t  present, but will be allowed to vary on the long viscous scale x3 when, 
later, the streamwise composite solution is introduced. Furthermore, as in 11, the 
parameter 

S = S,+E~S,, S ,  < 0, S ,  = 0 ( 1 ) ,  (2.2) 

h = 1/cfR (2.3) 
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describing the relative importance of viscous to nonlinear effects in the critical layer 
is taken to be O( 1). Viscous effects then enter into the critical-layer vorticity balance 
but are purely passive in the main part of the shear layer. The analysis of I1 shows 
that critical-layer effects cause changes in the flow on the scale of the slow streamwise 
variable I 

x1 = Qx, (2.4) 

and that i t  is sufficient to use the (local) Taylor series expansion of the basic-flow 
velocity for the purpose of studying its changes on the nonlinear critical-layer 
streamwise lengthscale (2.4). The analysis here need only be uniformly valid on the 
scale z1 but not on the slower scale x3, cf. figure 1.  

As in I and 11, the solution in the nonlinear streamwise region will now be 
expanded separately outside and inside the critical layer. Matching (in the transverse 
direction) of these expansions, which also involves equating the so-called velocity 
jump across the critical layer as given by the two expansions, will then lead to a 
nonlinear non-equilibrium critical-layer problem which completely determines the 
external instability-wave amplitude. 

As in I and 11, the solution outside the critical layer is expanded as 

II. = II.~(~)+E+~(s,Y,x~)+€~II.~+E~II.~+€~II.~+o(E~). (2.5) 

@,, is the zeroth-order term in the Taylor-series expansion for the basic flow, which 
is determined by the imposed upstream profile and by the previous slow development 
on the long viscous scale x3 = x / R .  The +n12 for n 2 2 are functions of y, the slow 
variable x,, and 

the streamwise coordinate in a reference frame moving with the actual phase velocity 
of the linear instability wave. The equations governing the first few $nlz(n 2 2) are 
given in Appendix A. 

As in 11, the O(s)  term, y?,, in the expansion (2.5) is the sum of the second term in 
the basic-flow Taylor series expansion and the (neutral) linear instability wave 
solution, i.e. 

where the mean-flow change term G(y) and the slowly varying amplitude function At 
are ultimately determined by the O(Q) problem. The higher +n,2 are of the form 

5 = x-Stla,, (2.6) 

= 2AxlG(y)+Re [~t(~l)d,(y)e '"ogl,  (2.7) 

1 +m 
@$~(y,xl)eimuo~ for n = 3,4, 

Substitution of (2.7) and (2.8) into the governing equations (see Appendix A) leads 
to a sequence of equations of which the first two for the fundamental component and 
its harmonics are ~ 

L, 6, = 0, 

m > O ,  (2.10) 
dAt u" 

L, = - is,, [ 2u, 

where 
ZTff 

(2.11) 

D = d/dy, and 8 ,  is the Kronecker tensor. Equations (2.9) (the Rayleigh equation for 
a regular neutral disturbance) and (2.10) are to be solved subject to the boundary 
conditions (d1, @ I m ) )  -+O as IyI ++ 00 and a normalization condition, say dl(0) = 1. 
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G(y) and @i0) are determined by the c-independent part of the O(E$ and 0 ( e 2 )  
problems, rgspectively , and are given in Appendix A. 

For small values of y, i.e. as the critical layer is approached, $1 can be expressed 
in terms of the Tollmien solutions to obtain 

(2.12) 
6 1  = 1 + ; ( ~ i + ~ ) Y ' + o ~ ~ ~ ~ ) + b , [ Y + ~ ~ Y ~ ~ l ~  U[ 

where b, = &(0) and can be easily determined from a numerical solution of (2.9). It 
follows from (2.10) and (2.12) that for small values of y 

where the f superscript indicates differeqt values for y 2 0. 
Multiplication of (2.10) for m = 1 with $,, subtraction of @!l) times (2.9) from the 

resulting equation, followed by integration from - co to -3 and 6 to + co, then 
taking the limit of 6+0+ and using the boundary conditions at  infinity and the 
small-y results (2.12) and (2.13) leads to the following solvability condition for (2.10) : 

where 

(2.14) 

(2.15) 

(2.16) 

and # denotes a Cauchy principal value integral. Note that J, = 0 for antisymmetric 
mean velocity profiles, e.g. the hyperbolic-tangent profile considered in I and 11. 
Equation (2.14) gives the so-called velocity jump across the critical layer as 
(formally) computed from the outer solution. Its imaginary part is usually referred 
to as the phase jump. 

Further details about the behaviour of the outer solution in neighbourhood of the 
critical layer can be found in Appendix A. As in I and 11, the scaled transverse 

(2.17) 
coordinate 

is now introduced to describe the solution in the critical layer. The stream function 
in the critical layer is also expanded as 

+ = Q U, Y + E (  Yo + 4 Y; + E In dYIL -I- cYl  + . . .), (2.18) 

where the Y,, are functions of 5, Y ,  and xl only. Yo to YIL are simply given by the 
corresponding terms in the inner limit of the outer solution (obtained by substituting 
(2.17) into (2.5) and re-expanding the result with the inner variable Y held fixed) and 
are given in Appendix B. Y1, the first non-trivial term in (2.18), is determined by the 
viscous critical-layer vorticity equation 

Y = Y/Ei  

azy l  
ay2 

Q, = -- Re (aiAte-iooc) (2.20) where 

and the total critical-layer vorticity is given by - (q + €52,) + O(d)  
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Integration of (2.20) with respect to Y from -M to  M ,  letting M +  00, and using 
the inner limit of the outer solution produces the matching condition 

(2.21) 

where (2.22) 

is minus the part of the O(s)  critical-layer vorticity that vanishes as IyI++ co. For 
m = 1, equation (2.21) gives the velocity jump across the critical layer as (formally) 
computed from the critical-layer solution. Equating the expressions for the velocity 
jump involving the outer and inner solutions, respectively, leads to  the matching 
condition 

Qte-iao6dcdY = in (2.23) 

Equations (2.19)-(2.23), together with the boundary condition that Qt+ 0 as 
I YJ + + 00, defines the nonlinear critical-layer problem. 

Note that for m > 1, equation (2.21) determines the amplitude of the O ( 3 )  higher 
harmonics in the outer flow. This problem, i.e. (2.10) subject to  the boundary 
conditions @ ! m ) + O  as IyI ++ co and to (2.21), all for m > 1 ,  is a well-posed pro- 
blem as longsas him) =+ birn)- for all m > 1. If this is true then the b!m)* can each be 
determined in te;ms of ?the corresponding a!m) from the condition: a t  y = & 00 (in 
general through a numerical solution of the problem) and (2.21) then sets the 
amplitude of this solution, i.e. the higher harmonics are forced by the critical-layer 
nonlinearity. If, however, b!m)+ = bAm)- for some m, then that harmonic is also a 
neutral eigensolution t n  the Rayleigh stability problem and this case must be treated 
separately because nonlinear interaction of the two eigensolutions is then possible in 
the critical layer(s) (e.g. Leib &, Goldstein 1989). This is not likely to occur for a 
monotonic mean-flow profile (which only has one critical layer), however. 

As x1 + - co, the solution approaches that of a linear growth critical layer and i t  
can easily be shown that the proper initial condition for (2.19)-(2.23) is 

f 2 

where 

At -+A: exp [ - i I ’ S l  gt ds,] , (2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Strictly speaking, the integrand in (2.24) is constant on the streamwise scale x1 
considered here. It is advantageous to write the upstream conditions for the 
nonlinear solution in the form (2.24) for the later introduction of a streamwise 
composite solution, however. Analogous comments also hold for equations (2.31), 
(2.36), (2.37), and (2.40) below. 
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By introducing the rescaled variables 

,=y= -1 J: ys, dx, +z,, 

x = a,[+X,, 
'I = (a, ue Y-S , ) / (  -;us,,, 

& = -[(a, ucy 0 / 2 u 3  - ;Oh',y] &+, 
A = [at Uc/( - A+ e-ixo, 

where E, and X ,  are given by 

and 

(2.31) 

(2.32) 
(2.33) 
(2.34) 
(2.35) 

(2.36) 

(2.37) 

(2.38) 

the nonlinear non-equilibrium critical-layer problem, i.e. (2.19)-(2.23), and the 
associated initial and boundary conditions are converted into the following scaled 
critical-layer problem : 

subject to the initial, boundary, and jump conditions 

A t e x p (  [adz) as %+-ao, (2.40) 

(2.42) 

I n  view of (2.29), this problem depends on the three independent parameters 0, x, 
and p. D is a scaled average mean-flow velocity in the critical layer (measured in the 
laboratory frame of reference); x is a rescaled h which in view of (2.2), (2.3), and 
(2.38) could be thought of as based on the detuning from the local neutral conditions 
rather than the amplitude ; and p is K times the ratio of the real and imaginary parts 
of the derivative of the wavenumber with respect to the phase velocity (both from 
linear inviscid theory) evaluated a t  the neutral point, which vanishes for 
antisymmetric mean profiles such as the one used in I and 11, and can be interpreted 
as a mean-flow symmetry parameter. 

The nonlinear non-equilibrium critical-layer problem, i.e. (2.39)-(2.42), can, 
however, be converted into the scaled critical-layer problem for the hyperbolic- 
tangent mean-flow problem studied in I1 by introducing new variables as described 
in Appendix C. Thus, the nonlinear non-equilibrium critical-layer problem studied in 
11, which is of the form (2.39)-(2.42) but with p = 0, therefore applies to  an arbitrary 
mean-flow profile provided the meaning of 0 and h in I1 are suitably generalized. 
(The form (2.39)-(2.42) actually turns out to be better suited to the numerical 
streamwise composite-solution procedure to be employed later, however.) The results 
of I1 showed that, no matter what the size of the parameter h, eventually the 
amplitude A exhibits algebraic growth and the critical layer is converted into a 
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primarily inviscid quasi-equilibrium one as z becomes large. The asymptotic 
solution to the nonlinear non-equilibrium critical-layer problem constructed in that 
limit in I1 is, of course, also valid in the general case analysed here and it is briefly 
described in Appendix C. 

3. The next stage of evolution 
As shown in 11, the relatively slow algebraic growth of the instability wave as 

x1 + + 00 allows the viscous mean-flow divergence eventually to alter the critical-layer 
structure and thereby induce a correction to the local growth rate before the 
instability-wave amplitude becomes O( 1). When 

x2 = dx,  = EX = C I X 3  (3.1) 
is O( l ) ,  this correction becomes of the same order of magnitude as the local growth 
rate and the non-equilibrium nonlinear critical-layer expansion will no longer be 
valid. Since the actual instability-wave amplitude is still only O(eg) in this streamwise 
region, the nonlinear effects are again confined to a narrow critical layer, now of 
thickness O(E~),  while the flow behaves linearly in the main part of the shear layer. 
As in 11, the critical layer now moves an O(@)  distance, i.e. a small fraction of its 
width, across the shear layer in order to remain in the quasi-equilibrium state 
achieved asymptotically in the previous stage. 

For x2 = 0 ( 1 ) ,  the expansion in the main part of the shear layer, i.e. for y = 0(1), 
is to a large extent a simple reordering of the corresponding expansion in $2 and, as 
in 11, is of the form 

1 1 

+~@i+ d ~ ~ + d ( ~ ~ , ) ~ G ( ~ ’ ( y ) + ~ ~ ~ ~ +  ..., (3.2) 

where 5 is given by (2.6); l/ro is the basic flow of $2; G, GC2) and G(3) are the y- 
dependent A coefficients in the Taylor-series expansion of the basic-flow stream 
function ; 

In order for the downstream expansion (3.2) to match onto the solution in the 
preceding non-equilibrium region, it follows from (2.5), (2.7), (C 1)-(C 12), and (3.1) 

is the neutral eigenfunction ; and A ,  and 8, are real functions of x2. 

that as x2+0 

where y ,  p ,  x, a, and el, are defined by (2.26), (2.28), (2.29), (C 11) and (C l2),  and 
detailed formulae for the latter two quantities are given in 11. 

The O(&, O(&) and O(d) terms are now of the form 
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where the two terms in (3.7) will be referred to as the in-phase and out-of-phase parts, 
respectively. Just  as in 11, neither Or), Of)  nor the in-phase term in (3.7) play a role 
in the determination of the amplitude and phase to the order of approximation of the 
analysis and, for simplicity of prescntation, are therefore ignored in what follows. @: 
and @?) are determined by 

3 

The boundary conditions for (3.8) and (3.9) are that (@;,@f))+O as [y(++oo. It 
follows from (2.12), (3.8), and (3.9) that for small values of k 

@ f = a ; + b : y  

(3.11) 

The solvability conditions (constructed as in $ 2 )  for (3.8) and (3.9) become 

b:- br = aOA,[20; J1 - (U,  O‘, +S,) J2+2hz2 J5], 
by)+ - b @ -  = - a0A;PJl- u, J 2 L  

(3.12) 
(3.13) 

8 

3 3 

where J, and J, are given by (2.15) and (2.16), respectively, and 

(3.14) 

Equations (3.12) and (3.13) determine the real and imaginary parts of the velocity 
jump across the critical layer to leading order, respectively. 

The critical-layer stream function is now expanded as 

@ = €f u, P+ &2hx2 cp’ u, + &( Yo + €4 Y;+ €i !Pi+€; Y; 
+dY~+dlnEYiL+EBYi+EYl+€iY~+~Y~...),  (3.15) 

where p =  y/ei (3.16) 

is a stretched transverse coordinate. The O(&) and O(&) terms and Yo to !PiL are 
simply re-expansions of the outer (main-region) solution. Only Yg and the out-of- 
phase part of Y; of the remaining non-trivial terms in (3.15) play a dynamically 
significant role in determining the instability amplitude and phase to lowest order 
and they are determined by 

u; 
u:, 

Lzesz, = -- (U,  0; + S, - 2hx2 cf‘) U,) A ,  sin 

where 9. is the equilibrium critical-layer vorticity operator 

(3.18) 

(3.19) 
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and C+ = a2!P;/aP and Sz?) = az*)/aP are minus the O(d) and minus the out-of- 

phase component of the 6($) critikl-layer vorticity. 
The solutions to (3.17)-(3.19) must satisfy the transverse boundary conditions 

Sz!) + 0, 

as IT + 00, together with the integral constraints 

(3.21 

(3.2 

=A,[(J1-$Uc Jz)O’,-$31 Jz+Azz JJ ,  (3.22) 

d[dP = -A&(Jl- iUc J,), (3.23) 

in order to match with the outer expansion (3.2). 
As in 11, this boundary-value problem (3.17)-(3.23) can effectively be converted 

into a quasi-equilibrium nonlinear critical-layer problem like the one in $5 of I1 and 
the final results for the amplitude and phase are 

(3.24) 

where (3.26) 

(3.27) 

A relatively straightforward perturbation calculation based on the Rayleigh linear 
stability problem with the base flow given by the first two terms in (3.2) (in order to 
incorporate a weak mean-flow divergence) shows that a1 is the O(& change in the 
neutral wavenumber due to the slowly changing local conditions and SiA) is the 
actual O(&) Strouhal number deviation from the local neutral value. It is clear that 
A ,  and Ol, satisfy the upstream boundary conditions (3.3) and (3.4) and that the 
mean-flow divergence effects are accounted for by the linear terms in Ax,. These 
effects eventually drive the growth rate to zero and then cause the instability wave 
to decay. The point of ultimate maximum amplitude is equal to the linear neutral 
stability point. It is important to realize, however, that  this ultimate maximum 
amplitude may not be reached in an experiment since once the linear growth rate has 
been reduced owing to nonlinear effects other disturbances not accounted for in the 
present theory could then be faster growing and may become large enough to 
invalidate the theory. 

As in 11, the critical-layer vorticity equation correct to, but not including, O ( E )  
terms, can be written in the equilibrium form, i.e. YeQ = 0, by simply shifting the 
transverse coordinate y, here, by the amount 

(3.28) 
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(3.29) '1N where ylc = 7 - 2hz, cy',  
LTr. 

(3.30) 

ylc is the O(&) displacement of the mean-flow inflexion point and clN is the O(&) 
change in the local (linear) neutral phase velocity, both due to the slow streamwise 
divergence of the mean flow. Thus, analogous to 11, the critical layer is shifted by the 
small amount &(UC 0; +S,-aoclN)/a0 Uh from the actual basic-flow inflexion point, 
which is a small amount compared to  its O(&) thickness. 

4. The composite solution 
The upstream linear unsteady flow can be determined by using weakly non- 

parallel stability theory (see Appendix D). The resulbing solution, uniformly valid on 
the slow outer streamwise lengthscale z3 = O(l ) ,  can be taken as the real part of 

where &p) denotes the spatially growing eigensolution to the Rayleigh stability 
problem using the streamwise mean-flow velocity at the location x3, a = a, + ia, is the 
corresponding complex eigenvalue, A(O) is the slowly varying amplitude function 
(determined through a solvability condition in an appropriate multiple-scale 
perturbation expansion in powers of the slow mean-flow viscous divergence rate 
l/R), and z, is the excitation (or a reference) position. 

As the nonlinear region is approached (i.e. as x 3 + O - ) ,  $?) +$, of $2, and it can 
be shown, either by inspection of the classical analysis of a perturbation about the 
neutral point (e.g. Yih 1969, p. 481) or, equivalently, by carrying out a growth 

(4.2) 
critical-layer analysis, that 

ia + iao - tei S ,  at, 

where a, is the neutral wavenumber and rt is given by (2.25). The inner limit of the 
outer weakly non-parallel solution is, thus, given by 

where A: = A ( O ) ( O )  exp [ i le a(z3)  dx] . 

(4.3) 

(4.4) 

The inner nonlinear solution $(i) is given by the second term on the right-hand side 
of (2.7) and it follows from (2.24) that  +(i)+$(o'i) as z1 + O + ,  i.e. that  the solutions 
in the two different streamwise regions match. A uniformly valid composite solution 
can then be constructed by using the multiplicative rule (e.g. Van Dyke 1975) 

which upon substituting the different solutions and using (2.25), (2.31), (2.34), (2.36), 
and (2.37) becomes 
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where A ( E )  exp ( - $ cr dz) can be interpreted as a universal nonlinear correction 
factor, which depends only on o , & p ,  and the shifted coordinate Z. The latter 
coordinate is given in terms of the original coordinate x by the implicit relationship 

which is obtained by combining (2.25), (2.31), (2.36), and (4.2). 

is approached. For x2 = 0(1 ) ,  a (linear) growth critical-layer analysis shows that 
As x1 -+ + CQ, the streamwise region where non-parallel effects again are important 

ia~ia,+8(ia1-~s,XIA)cr+),  (4.8) 

where 01, is the O(&) change in the neutral wavenumber due to the slowly changing 
local conditions and S$) is the actual O(&) Strouhal number deviation from the local 
neutral value; a, and SlA) are given by (3.26) and (3.27). Combination of (2.36), (4.4), 
(4.7), and (4.8) gives that 

from which it follows that 

(4.10) 

The first two members of (4.10) are simply the extension of (2.31) to the streamwise 
region x, = dz, = 0(1 ). 

Furthermore, (2.36), (2.37), (4.10), (C l),  (C 2), (C 4), and (C 8)-(C 13) show that 
the universal nonlinear correction factor in (4.6) 

A (z) exp [ - J%: v d ~ ]  + 5 (sr 
A: a: 

as x , + + a ,  with x2 = eiz, = 0(1), where X: is given by (C 10) and 0, is a constant 
phase factor that can only be determined by going to a higher order in the large- 
XZ asymptotic expansion (than was carried out in 11) and then matching with the 
numerical solution for the non-equilibrium nonlinear critical-layer region. By now 
combining (4.4), (4.6), (4.8), and (4.11), it follows that 

as x,-++co, with x2 = d x l  = O ( l ) ,  where @,, = &Q,-XA), and 0: is given by 
(3.25). By comparing (4.12) with the assumption (3.2) and the results (3.24) and 
(3.25), i t  is clear that the region x2 = 0(1) is automatically contained in the 
composite solution (4.6), i.e. the latter is valid up to, and some distance beyond, the 
linear neutral point. 
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Equation (4.7) can be replaced by the following expression, which is of the same 
formal asymptotic order in the inner nonlinear region where the nonlinear correction 
factor differs from unity 

(4.13) 

where the parameters now also are allowed to vary with the slow streamwise 
coordinate x3. The streamwise location of the inner nonlinear region is automatically 
set by the linear instability-wave growth when z is determined using (4.13). If the 
argument of the natural logarithm in (4.13), which can be interpreted as the ratio of 
the instability-wave amplitude and the square of a measure of the detuning from the 
local neutral conditions, remains much less than unity in the streamwise region of 
interest, then nonlinear effects are not important in that region. 

The first step in obtaining a uniformly valid solution for the mean flow is to form 
an additive transverse composite solution in the inner flow region, x1 = 0 ( 1 ) ,  where 
the nonlinear effects are important. Pertinent details about the mean-flow parts of 
the expansions outside and inside the critical layer, (2.5) and (2.17), are given in 
Appendices A and B. By then forming the streamwise composite solution from the 
solution valid on the x3 scale and the transverse composite solution valid on the x1 
scale, the following uniformly valid (in both streamwise and transverse directions) 
results for the mean streamwise velocity and minus the mean vorticity are obtained : 

0" 

J -m 

(4.14) 

(4.15) 

where U0)(y;  x3) is the mean-flow solution (computed in the absence of the instability 
wave) valid on the outer scale x3 and Qi is twice the period average of Qt. Outside the 
critical layer, the terms involving Qi in (4.14) and (4.15) vanish and in addition the 
equations are correct to O(e2), the magnitude of the Reynolds stresses. 

The maximum of the mean vorticity will occur inside the critical layer and it 
follows that the uniformly valid vorticity thickness is given by 

where 6(0)(x3) is the vorticity thickness of the (streamwise) outer solution, 

&,,, = [Q0-P(~-~)]  2 2  

rnax 

and Qo is twice the period average of &. 

(4.16) 

(4.17) 

5. Results and discussion 
The asymptotic theory of the previous sections accounts for the instability-wave 

nonlinearity as well as the viscous spreading of the basic flow. The main purpose of 
this section is now to test the resulting uniformly valid composite solution by a 
comparison with suitable experiments. Among the requirements for the experiments 
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are that the shear layer initially is laminar and, in particular, that sufficient details 
are available about the early development of both the instability wave and the mean 
flow so that a first-principle comparison can be assured. In this respect, it is necessary 
that there is an initial streamwise region where the flow can be treated as a 
superposition ofa  linear instability wave and an undisturbed mean flow. An excellent 
discussion of relevant experimental literature, as well as other topics of interest, can 
be found in thc review paper by Ho & Huerre (1984). Comparisons will be made here 
with experimental data for plane-jet shear layer (Thomas & Chu 1989), a circular-jet 
shear layer (Freymuth 1966), and a mixing layer behind a splitter plate (C.-M. Ho & 
Y. Zohar 1989, private communication). 

The following procedure or strategy was used to ensure a first-principle comparison 
between theory and experiment. First, the mean streamwise velocity profile was 
fitted by an analytical expression at (only) one streamwise measuring station - 
located sufficiently far upstream to ensure that the instability wave had a small 
enough amplitude that the local mean flow was unaffected by its presence. Since it 
is impossible to  establish how small is small enough on an a priori basis, the 
supcrposition assumption was tested as part of the computations. Second, the 
downstream evolution of the undisturbed mean flow was computed using a 
‘ boundary-layer ’ type numerical code with the fitted profile used as initial condition. 
The computed mean flow was then compared to  the measured one to partially verify 
that the mean-flow initially was unaffected by the instability wave (a full verification 
would also involve a demonstration that the instability wave initially grows 
according to  linear theory). Third, the Rayleigh stability problem was solved 
numerically using the computed local velocity profiles. The weakly non-parallel 
corrections [in this case also including viscous-dissipation effects which enter at the 
same order as the non-parallel ones (Lanchon & Eckhaus 1964), see Appendix D] 
were computed and the overall results were integrated in the streamwise direction to 
predict the amplitude evolution of the linear instability wave. At this point, the 
linear growth of the initial instability wave could also be verified. It is also worth 
noting that a first-principle comparison would not be achieved if measured profiles 
were used instead of the computed (undisturbed) ones since the mean flow is affected 
by the instability wave in the roll-up region. 

Fourth, the parameters 0, A, and p and the equivalent nonlinear coordinate z, cf. 
(2.30), (2.38), (2.28), and (4.13), were evaluated as functions of the streamwise 
location from these results and the streamwise energy of the instability wave at the 
initial measuring station. Because of the slowly varying mean flow, this step, in fact, 
also involves the determination of the local linear neutral conditions as functions of 
the streamwise location. Since D, 1, and p depend on the streamwise location, these 
parameters are then known as weak functions of Z. Finally, thc nonlinear correction 
factor in (4.6) was evaluated by solving the nonlinear non-equilibrium critical-layer 
problem (2.39)-(2.42) with slowly varying parameters. The details of the weakly non- 
parallel linear stability problem and some remarks about the mean-flow computation 
are given in Appendix D. The numerical treatment of the nonlinear non-equilibrium 
critical-layer problem is similar to 11, but the parameters now are evaluated locally. 

The Thomas & Chu (1989) experiment involves a plane jet issuing from a two- 
dimensional nozzle ending in a slot of width D = 12.7 mm and height H = 457 mm. 
Although the mean-flow configuration is that of a submerged plane jet, the initial 
shear layers are completely non-interacting for the streamwise region of interest here 
(at most 1.5 slot-widths downstream of the plane-jet orifice) and can therefore be 
treated independently. The reader is referred to Thomas & Chu’s (1989) paper for 
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FIUURE 2. Comparison of computed undisturbed-flow momentum thickness (-) with data 
from Thomas & Chu's (1989) plane-jet shear-layer experiment (@I). 
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complete details about their experiment. They used a relatively low-level single- 
frequency acoustic excitation of frequency w,,/27c = 750 Hz to somewhat organize 
the disturbance flow and to  provide a phase reference. The average velocity of the 
streams U,, = 4.8 m s-' (half the exit velocity), and the kinematic viscosity of the air 
is computed be u = 14.7 x m sP2 from the stated slot-width exit-velocity 
Reynolds number of 8300. This leads to a convective lengthscale L, = UA,/wef = 
1.02 mm and a frequency parameter F = vw,,/CF,. = 3.01 x lop3. The Strouhal 
number (based on the average stream velocity and half the local vorticity thickness) 
is estimated here to be 0.304 a t  their first mean-flow measuring station, located 0.25 
slot-widths downstream of the plane- jet orifice. The aforementioned condition on the 
instability-wave amplitude was judged to be satisfied at  this measuring station and, 
using a least-squares procedure, a good fit of the experimental mean-flow profile 
(Thomas & Chu 1989, figure 2) could be obtained with an analytical expression of the 
form 

U(y) = 1 +RaF(Cy):  (5.1) 
(5.2) 

where Ra = (U,  - U2)/( U, + U,)  ( = 1, here) is commonly called the velocity ratio of 
the shear layer, and A ,  B, and C are constants. 

Both a shear-layer code (where two free-stream conditions are imposed) and a 
plane-jet code (where one of the free stream-conditions is replaced by a centreline 
symmetry condition) were then used to determine the mean-flow evolution. It was 
concluded from the plane-jet results as well as from a comparison with the results of 
the (isolated) shear-layer code that there was no detectable interaction between the 
two shear layers in the streamwise region of interest. The isolated-shear-layer 
assumption is therefore completely adequate for the present computations. 

The computed streamwise evolution of the undisturbed-flow momentum thickness 
is compared with the experimental data (Thomas & Chu 1989, figure 3) in figure 2. 
The agreement is good even in the streamwise region where nonlinear effects are 

P(u)  = tanh u+ ( A  --B tanh u) sech2 ($), 
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FIGURE 3. Computed linear parallel-flow spatial growth rates for the mean-flow measurement 
stations in Thomas 6 Chu’s (1989) plane-jet shear-layer experiment. 

expected to be important for the disturbance flow (roughly the second half of the 
displayed streamwise region). This is because the nonlinear momentum-thickness 
correction is O(e2) and therefore can be quite small. Furthermore, the agreement can 
actually be considered to be quite good if one takes into account that the relative 
error in the measurements is likely to be large because of the small values of the 
momentum thickness in the streamwise region shown in this figure. 

Figure 3 shows curves of the linear parallel-flow spatial growth rate corresponding 
to the mean-flow measuring stations z* = &D, n = 1 , 2 , .  . . , 6 ,  in the Thomas & Chu 
(1989) experiment. The calculations were based on velocity profiles from the 
undisturbed mean-flow computation, and the abscissa and ordinate have been 
normalized using the angular frequency of the forcing and the convective lengthscale 
L, ( = UA./we.), respectively. These growth-rate curves are, apart from the first, 
nearly self-similar in the sense that they nearly can be collapsed onto a single curve 
when local scales based on the shear-layer vorticity thickness are used in the 
normalization. However, the present global scaling is used to illustrate how the 
quasi-parallel linear growth rate changes as the forced disturbance (u*/uet = I) 
propagates downstream. Note that the non-dimensional frequency of unity is less 
than the peak frequency of the local growth rate curve at  the first streamwise station. 
The overall magnitude of the growth rate then decreases and the peak of the local 
growth-rate curve moves towards smaller values of u*/ue. with increasing 
downstream distance. The quasi-parallel linear growth rate of the forced disturbance 
is therefore monotonically decreasing with downstream distance. As indicated below, 
the nonlinear effects first come into play at the streamwise position where we+ is just 
larger than the peak frequency of the corresponding local growth-rate curve. Note 
that, at  least from a theoretical point of view, the linear growth rate has become 
small at this point. In fact d would be about 0.26-0.32 for an disturbance amplitude 
of about 7-10% of the characteristic mean-flow velocity, which is typical of the 
Thomas & Chu (1989, figure 11)  experiment, so that the linear growth rate in the 
aforementioned region is consistent with the inherent scaling assumptions in the 
present analysis, cf. (2.2) and (2.4). It is also important to note that the linear 
growth-rate curves corresponding to this particular experiment are quite straight 
from the maximum growth rate to the neutral point, which indicates that the linear 
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FIGURE 4. Comparison of composite solution accounting for both nonlinear critical-layer effects and 
viscous mean-flow spreading with instability-wave energy data from Thomas 6 Chu’s (1989) plane- 
jet shear-layer experiment. 

perturbation about the local neutral point will provide a good representation of the 
actual quasi-parallel linear growth rate almost all the way up to the peak value. This 
suggests that the near-neutral assumption of the present theory will provide a good 
approximation in the flow region of interest. These considerations, along with the 
fact that asymptotic analysis is a rational way to  account for the essential physics 
of the problem, leads one to  expect that the nonlinear non-equilibrium critical layer 
theory will provide a good description of the flow even though the nonlinear effects, 
in a sense, have to come in quite early. 

An appropriate measure of the spatially evolving instability-wave amplitude in a 
non-parallel flow is given by the energy associated with the streamwise velocity 
component u* of the instability wave, 

where the overbar denotes a period average and $@) is given by (4.6). 
The experimental instability-wave energy was obtained from Thomas BE Chu’s 

(1989) figure 11, which was derived from cross-stream integrated shear-layer power 
spectra normalized by the initial jet half-width sz (the normalization information 
was inadvertently omitted from their paper). The initial energy input to the 
nonlinear calculation was then determined by optimizing the fit of the linear weakly 
non-parallel solution with the first few data points rather than using the experimental 
value at  the first (mean-flow) measuring station; it was taken to be Eli = 9 x 
This procedure was used in order to minimize the influence on the overall results of 
the unavoidable error in the measurements a t  any given station. 

Figure 4 shows the excellent agreement between the composite solution and the 
experimental results. (No experimental mean-flow data are available until the second 
instability-wave data point - this is why the comparison starts a t  the corresponding 
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streamwise location.) While the theory does not predict the last data point very well, 
Thomas & Chu’s (1989) figure 11 shows the flow to be dominated by subharmonics 
of the sum and difference frequencies of the forcing frequency (750 Hz) and the so- 
called jet-column frequency of 125 Hz a t  that streamwise station and hence that the 
assumptions of the theory are probably violated there. Note that one of the inherent 
assumptions of the theory is that the disturbance flow is dominated by the forcing 
frequency outside the critical layer. However, all harmonics are generated and are on 
equal footing inside the critical layer since the flow is strongly nonlinear there. The 
less drastic amplitude reduction predicted by the composite solution once the peak 
value is passed is also reminiscent of the experimental results obtained by Freymuth 
(1966), see below. Figure 4 also shows that there is an initial streamwise region where 
the disturbance is well described by weakly non-parallel linear theory based on 
undisturbed mean-flow profiles which, as pointed out above, is an essential part of 
assuring that a first-principle comparison is being carried out. As pointed out by 
Thomas & Chu (1989) and as can be seen clearly from the present figures 3 and 4, the 
nonlinear instability wave saturates well upstream of the linear neutral stability 
point for the undisturbed mean flow. The saturation level therefore is not related to 
the ultimate maximum amplitude of $3 for the reason pointed out in that section. 
The effective saturation in the composite solution is associated with the first of the 
local amplitude maxima caused by oscillations in the growth rate, see I and 11. The 
predicted instability-wave evolution and saturation is in excellent agreement with 
the experiment in the streamwise region where the experimental disturbance flow is 
dominated by the forced frequency, i.e. within the expected range of validity of the 
theory. 

A comparison will also be carried out here with the only case in Freymuth’s (1966) 
investigation of the initial shear-layer transition process for which the mean-flow 
velocity distribution a t  the beginning of the linear region was documented. This case, 
described in his figures 4-10 and 29 and the accompanying discussion, was a circular 
jet with a nozzle diameter of 75 mm, a jet-core velocity of 8 m s-l, which was 
acoustically excited a t  416 Hz. The value of the kinematic viscosity consistent with 
the information given is 14.8 x m2 s-l. This leads to  a convective lengthscale 
L = 1.53 mm and a frequency parameter F = 2.42 x lop3. The mean velocity 
distribution at the initial or reference station, located about ten local momentum 
thicknesses downstream of the nozzle lip, was found by Freymuth (1966) to be quite 
well described by a hyperbolic-tangent velocity profile, i.e. (5.1), (5.2) with R a  = 1 
and A = B = 0. Thus, the Strouhal number a t  the reference station was 0.300 when 
using the present normalization. Drubka (1981, figure 18) also found in his circular- 
jet shear-layer investigation that the mean flow was well described by a hyperbolic- 
tangent profile close to the jet nozzle with the mean velocity then developing towards 
a self-similar profile in the linear region. 

The streamwise evolution of the mean flow was determined using the shear-layer 
code with a hyperbolic- tangent velocity profile as upstream condition. Unfortu- 
nately, figure 4 in Freymuth (1966) only shows the momentum-thickness 
evolution for a rather limited streamwise distance and all data points except one are 
clustered in the vicinity of the reference station. The computed momentum 
thickness, of course, fits the data in the figure quite well for the clustered points, but 
the somewhat isolated last point in that figure has a value about 11 % lower than the 
computed value. Little weight should be placed on this discrepancy, however, in view 
of the inherent difficulty in measuring the momentum thickness ‘due to  hot-wire 
rectification errors in the zero-velocity free stream ’. Drubka (1981) also reported a 
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FIQURE 5. Comparison of composite solution accounting for both nonlinear critical-layer effects and 
viscous mean-flow spreading with instability-wave amplitude data for four excitation levels from 
Preymuth's (1966) circular-jet shear-layer experiment. 

momentum-thickness evolution in his experiment that was contrary to Freymuth's 
(1966) observation but which is in line with the computed values here. 

Freymuth used the transverse maximum of the r.m.s. value of the streamwise 
velocity component of the instability wave as a measure of the disturbance 
amplitude, i.e. ukax = maxy u', wherc 

and f C )  is given by (4.6). Figure 5 shows a comparison of the composite solution with 
Freymuth's (1966, figure 10) amplitude-evolution data for four different excitation 
levels. The values of maxy u' a t  the reference station corresponding to the four curves 
are 4 x 1.2 x 3.6 x and 1.1 x lop2, respectively. This figure confirms 
that there is an initial streamwise region where the disturbance is well described by 
weakly non-parallel linear stability theory based on the undisturbed mean flow and 
that, of course, this region becomes shorter with increasing initial amplitude. The 
composite solution is in good agreement with the experimental data corresponding 
to the lowest excitation level, except for what appears to be a local minimum in the 
experimental data just past the first nonlinear saturation. This discrepancy could be 
caused by an interaction with naturally occurring ' subharmonic ' disturbances that 
are not accounted for in the present theory, as in the comparison above with the 
Thomas & Chu (1989) experiment, but unfortunately Freymuth (1966) does not 
provide any information about such disturbances. The agreement between theory 
and experiment is very good a t  the next higher level of initial amplitude, however. 
This gives some further circumstantial evidence for the conjecture above since the 
naturally occurring ' subharmonic ' disturbances probably have not reached a 
sufficient amplitude to ultimately influence the fundamental disturbance in any but 
the least excited case where the saturation occurs the furthest downstream. For the 
highest two excitation levels, the nonlinear effects come into play upstream of the 
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FIGURE 6. Comparison with vorticity-thickness and momentum-thickness data from C.-M. Ho & Y. 
Zohar's (unpublished) mixing-layer experiment : 13, vorticity thickness, low-level forcing at 
natural frequency ; 0,  vorticity thickness, unforced case ; A, momentum thickness, low-level 
forcing at natural frequency; + , momentum thickness, unforced case. 

streamwise location (here about 9L,) where we. corresponds to the peak in the local 
linear growth-rate curve. Since the relative importance of the linear effects are then 
overestimated in the nonlinear theory, the composite solution, as can be seen in 
figure 5, will increasingly underestimate the deviation from the weakly non-parallel 
linear theory with increasing excitation level. The composite solution yields a 
qualitatively correct result for the highest two levels of excitation here, however. 

The third experiment used for comparison consists of unpublished data kindly 
supplied by C.-M. Ho & Y. Zohar (1989) of the Department of Aerospace 
Engineering, University of Southern California, for a mixing layer behind a splitter 
plate. A relatively low-level forcing at  the so-called natural shear-layer frequency 
(here 355 Hz) was used to excite the shear layer, but data were also supplied for the 
corresponding unforced case. The average velocity and the velocity ratio of the two 
streams were 7.5 m s-l and Ra = 0.652, respectively. The shear-layer facility is the 
same as used in Huang & Ho (1990) and further information about the wind tunnel 
can be found in that paper. The convective lengthscale is L, = 3.33 mm and, with 
v = 15 x m2 s-l, the frequency parameter becomes F = 6.03 x for this 
experiment. In order to avoid trailing-edge effects, the streamwise reference station 
was here taken to be the second streamwise measuring station, located 6.9 mm 
downstream of the trailing edge of the splitter plate (the corresponding distance for 
the first station is 0.5 mm), and the local Strouhal number was estimated to be 0.350. 
The velocity profile, which still has a sizable wake defect at this station, was fitted 
with (5.1), (5.2) and the downstream evolution of the mean flow was determined 
using the shear-layer code. The initial instability-wave energy was taken to be 
El,  = 1.6 x lo-' for the nonlinear stability computation. 

Figure 6 shows the shear-layer vorticity thickness, including the additional 
thickening produced by the nonlinear instability wave, the momentum thickness, 
and the corresponding experimental data as functions of the streamwise distance, 
and figure 7 shows a comparison of the experimental data for the streamwise 
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FIGURE 7. Comparison of composite solution accounting for both nonlinear critical-layer effects and 
viscous mean-flow spreading with instability-wave energy data from Ho & Zohar’s mixing-layer 
experiment : [3, low-level forcing a t  natural frequency : 0. unforced case. 

evolution of the instability-wave energy and the composite solution, cf. (5.3). These 
figures show that there is an initial streamwise region where the mean flow and the 
instability wave are well described by the undisturbed mean-flow computation and 
weakly non-parallel linear stability theory based on that computation, respectively. 
The agreement between the composite instability-wave energy and the experimental 
data is good in this case also. The initial additional thickening is well described by 
the composite vorticity, but the later oscillation in the composite solution is not 
reflected in the experimental data. The main effects of the wake component on the 
local linear stability properties are an increase in the maximum value of the growth 
rate and a reduction in the unstable frequency range. However, the lower value of 
the frequency parameter compared to the experiments discussed above means, as can 
be seen in figure 6, that the undisturbed shear layer spreads less over the streamwise 
region of interest in this case. Consequently, thc local Strouhal number of the 
instability wave, initially being just slightly less than that corresponding to the 
maximum growth rate, remains close to the peak value at all streamwise stations. 
This, as noted above, leads to an overestimation of the relative importance of linear 
effects in the nonlinear theory and, hence, is the most likely cause for the small 
overshoot in the composite instability-wave energy and probably also for the 
oscillation in the composite vorticity thickness. 

The present investigation has shown that the nonlinear instability wave behaviour 
is determined mainly in a small transverse region located a t  the position where the 
mean-flow vorticity is at maximum and that the vorticity thickness is a sensitive 
measure of the nonlinear disturbance effects on the mean flow. One can but hope that 
this (local) measure of the shear layer thickness, rather than the more traditional and 
global measure, the momentum thickness, will be documented in future experimental 
investigations. The vorticity thickness is: arguably, thc more fundamental of the two 
since the momentum thickness has no precise physical interpretation for the doubly 
unbounded flows considered herein. (As can be seen in figure 7, the momentum 
thickness can also take on a negative value for shear-layer flows with a sufficient 
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wake component.) The vorticity thickness is also the appropriate measure to be used 
in order to collapse linear stability calculations for different shear-layer profiles 
(Monkewitz & Huerre 1982). 

The author wishes to thank Drs C.-M. Ho and Y. Zohar for providing the mixing- 
layer data. 

Appendix A. The main part of the shear layer 
The first term, 1Cr0, in the main-shear-layer expansion (2.5) is related to the zeroth- 

order term in the (local) basic-flow Taylor series expansion and, hence, is determined 
by the upstream history of the basic flow. For small values of y ,  $o can be expressed 
as 

$o = u, y+BU, y2+&UZ y4+0(y5), (A 1 )  

where the subscript c denotes the value at the inflexion point of the basic flow. The 
other terms in (2.5) can be determined by an analysis valid on the streamwise scale 
x,, however, and the next few $'n,2(n> 1)  are governed by 

2 0 $ 1 =  0, (A 2) 

2Zo$; = -L?,$,+AU'", (A 3) 

where 

and V2 denotes the Laplacian with respect to [ and y.  

part of the O($) problem (A 3) gives that 
As in 11, substitution of (2.7) into (A 2) leads to (2.9) for 4, and the Y-independent 

with the constant cia), which simply corresponds to a transverse shift of the 
streamlines, determined by the global mean-flow variation. Substitution of the 



658 L .  S .  Hultgren 

n = 3 term of (2.8) into (A 3) produces (2.10) for aim), m 2 1 ,  and the g-independent 
part of the O(e2)  and O(eg) problems (A 4) and (A b), gives that 

',"l 
]dy} U, U: sinh y 

- 
U ( U -  U,)2 

where PZw denotes the O(e2) mean-flow pressure a t  the edges of the shear layer, i.e. 
as y++- 00. It also follows from the first two members of (A 12) that the O(e2) jump 
in the streamwise mean velocity across the critical layer is given by 

where (A 14, 15) 

Equation (A 11) implies that there are non-vanishing O(e2) transverse mean-flow 
velocity components a t  the edges of the shear layer, i.e. as y+ f co. This necessitates 
an outer potential flow on the x1 and y1 = dy scales. The requirement that the 
tangential velocity of these potential flows (one on each side of the shear layer) match 
the O(e2) streamwise mean flow velocities obtainable from (A2) in the limit of 
y + 00 yields the following pressure-displacement conditions : 

where U; denotes the limit of U as y + k  00. However, as shown in Appendix B, 
Piw = Piw, and it then follows from (A 16) that, as in I, 

u p  = Piw = Piw = 0. (A 17) 
1 

Finally, a small-y analysis of the O(e2)  problem (A 4) for m > 0 shows that 

+ W  

(A 18) 

where 

At2 
-8,,-(2b1 8 UA2 U[+$V:). (A 19) 
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Appendix B. The critical-layer expansion 

correspond to terms in the inner limit of the outer solution and are given by 
The first few terms in the critical-layer expansion (2.18), Yo to YIL, simply 

Yo = tUc y2 + 2Ax, U, cia) + Re (At e'"oc), (B 1) 
/ +m \ 

Y, is the first non-trivial term in the critical-layer expansion (2.18) and is determined 
by the viscous critical-layer vorticity equations (2.19) and (2.20). 

Of the next two terms in (2.18), 

T TI1 I \ 

where Cim) is given by (A 19), again simply corresponds to a term in the inner 
expansion of the outer solution, but Y; is non-trivial and is determined by 

where Yv is the viscous critical-layer operator in (2.19) and 

Integration of (B 5) with respect to  Y from -M to  M ,  followed by integration with 
respect to  6 from 0 to 27c/a,, using the boundary conditions (B 6) while letting 
M + + co , and finally integrating with respect to x,, produces the following result for 
the O(s2) jump in the streamwise mean velocity: 

G AU2 = -- lim rM YD,dY, 
'c M++m 

where the overbar denotes the period average. Substitution of (2.20) into (B8),  
integration by parts, and using the boundary conditions for Y, leads to 

Au - - % ( u ( 0 ) + -  uc u2 (0)- ) -~~At~"J . -Px;~ ,J4 .  (B 9) 

Combination of (A 13) and (B 9) shows that 

P L  = pz, ,  (B 10) 
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i.e. that there is no mean pressure jump across the critical layer a t  0 ( e 2 ) .  
Multiplication of (2.19) by Y ,  followed by integration with respect to Y from -1M 

to M ,  integration with respect to 5 from 0 to 27c/aO, using the boundary conditions 
for Y, while letting M +  + co, integrating with respect to xl, and then combining the 
result with (B 8), produces the additional result for the O(s2) jump in the streamwise 
mean velocity 

(B 11) 
a: u:, 
2 u, AU - --IAtI2 (J l -+U,J2) .  2 -  

Equations (B 10) and (B 11)  can now be used to determine a!jo)+-aF)-. 

Appendix C. The generic problem and large-& behaviour 
The non-equilibrium nonlinear critical-layer problem, i.e. (2.39)-(2.42), can be 

converted into the scaled critical-layer problem for the hyperbolic-tangent mean- 
flow problem studied in 11, by introducing the new variables and parameters (the 
prime does not denote differentiation in this Appendix - it is simply used to denote 
new quantities) 

z 
A’ = x4Aexp [ -i(X;-Xo)-i[zo$dz] 

and with u’ replacing K in the notation of 11. Thus, the non-equilibrium nonlinear 
critical-layer problem studied in 11, which is of the form (2.39)-(2.42) but with 
p = 0, applies to an arbitrary mean-flow profile provided that the meaning of 0 and 
h in I1 are suitably generalized. 
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The results of11 showed that, no matter what the size of the viscous parameter n', 
the amplitude A' eventually exhibits algebraic growth as X'x' becomes large and an 
asymptotic solution to the non-equilibrium nonlinear critical-layer problem was 
constructed in that limit. This asymptotic solution is, of course, also valid in the 
general case analysed here and it is of the form 

a = a,  &[I  +a,&+a, ?pi+. . . +a,P-* +. ..I, (C 11) 

dO 
dx' - = e,[i +elz-f+e,5-i+. . . + B,P+. . .I, 

where 5 = h'x', a = IA'I, the phase 0 is defined by 

(C 13) A' = ae-ie 

and a,, a,, a2 , .  . . and t?;, el, 02.. . are constants that are fully determined by the 
asymptotic solution without invoking any upstream matching conditions. The first 
few constants are given in 11. Note that the asymptotic analysis only determines the 
phase variation (or wavonumber correction) d@/dx' and not the phase 8 itself. This 
means that there is one arbitrary parameter, i.e. a constant phase factor, say O,, 
that, in principle, can be determined by upstream matching with the numerical 
solution. (The asymptotic solution must be carried out to include the sixth-order 
terms in order to accomplish this, however.) 

Appendix D. The weakly non-parallel linear stability calculation 
To perform the linear and weakly non-parallel stability calculations, it turns out 

to be advantageous temporarily to abandon the non-dimensionalization used in the 
main portions of this paper. Here, the convective lengthscale L, = UA,/we., l/we., 
and U,. will be used as length, time, and velocity scales, respectively. Since the mean 
flow is inflexionally unstable, it follows that the frequency parameter 

F = O e . V / v ~ .  < 1 (D 1)  

can be interpreted as an inverse Reynolds number, characteristic of the streamwise 
region in the vicinity of the linear neutral point. 

A stream function for the mean flow can now be introduced in the form 

!P = (25)"(5, $9, (U 2 )  

(D 3), (D 4) 
where, now, 

5 = F ( s  + X"), 7 = [Y - Yc(E)l (28 - i ;  

x, is the distance to the virtual origin of the shear layer, and ye([) is the 
indeterminate location of the inflexion point. It follows that f (in the absence of any 
mean-flow pressure gradient) is governed by 

f,, +&v = 25(f,fl,-ftf,,), (D 5 )  

f v + l f R a  as ~ - f + m ,  f , , , ( f l ,O)  = O ,  (D 6), (D 7) 

subject to the boundary conditions 

where R a  = (Ul -U , ) / (U ,+  U,) is the velocity ratio of the shear layer. The 
introduction of the boundary condition (D 7)  is allowed in view of (D 4). The c- 
dependence off is necessary because, in general, remnants of the upstream conditions 
are still present and a self-similar velocity profile has not yet been achieved in the 
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early, i.e. linear, part of the measurement region. This is particularly so in splitter- 
type experiments where a substantial wake component is usually present. 

The perturbation stream function is now taken to  be of the form 

where te is a reference location, say the excitation point, and $ expands as 

6 = A ( t ) d ( f , 7 ) + F 6 , + O ( F 2 ) .  (D 9) 

Substitution of Y+$ ($ < ‘u) into the Navier-Stokes equations followed by 
linearization with respect to  the perturbation stream function and then expansion in 
terms of the small parameter F leads to a sequence of perturbation problems. The 
zeroth-order problem is simply the Rayleigh stability problem, i.e. 

LYR $ = ik[( U -  c) (D2 - k2) - U,,] $ = 0, (D 10) 

subject to the boundary condition $ + 0 as 171 + + 00, where U = f, is the streamwise 
mean-flow velocity, c = 1 / ~ ,  k = ( 2 6 ) ; ~ ~  and D now denotes differentiation with 
respect to r ] .  The Strouhal number (of $2) based on the average velocity and the local 
vorticity thickness is simply S = 4 / 2 ,  where 6, = [2Ru/max (f,)] (26); is the local 
(non-dimensional) vorticity thickness of the shear layer, and the streamwise 
wavenumber based on the local vortcity thickness is a = SK. 

The solution of (D 10) subject to its boundary conditions determines the complex 
eigenvalue K. The associated eigenfunction $ ( f ,  7) depends parametrically on f 
through the coefficients in (D 10) and the factor A ( ( )  in (D 9) is an amplitude function 
which is determined by a secularity condition for the next-order (i.e. O(F))  problem. 
That problem reads 

yk$l = -(2[)i[~(J)A’+b(d)A], (D 11) 

where u = (2k2~-3k2f7- f , , )d+f , ,D2$,  (D 12) 

Y‘ 1 

(205 2f 
+ (f -~f,+ 2t; fs) (D2 - k2) Dd] + 2k2(f,-c) +Dd -- (D2 - k2)2 4. (D 13) 

The boundary conditions for (D 11) are that 61 -to as Ir](  ++ 00. The factor a is 
identical to and, excluding the last two terms, b reduces for self-similar mean flows 
(i.e.f6 = 0) to  the corresponding results in Gaster’s (1974) investigation on the effects 
of boundary-layer growth of flow stability. The second-to-last term in b arises 
because of (D 4), i.e. the indeterminate location of the inflexion point, and the last 
term is the viscous term. I n  studies dealing with flows, such as a Blasius boundary 
layer, where the instability is caused by viscous effects, that  last term, of course, 
cannot be treated as a higher-order term - it must be included heuristically in the 
zeroth-order equation, thus, leading to the Orr-Sommerfeld rather than the 
Rayleigh stability problem. However, the viscous term is a correction term of the 
same order of magnitude as the non-parallel mean-flow effects for inviscidly unstable 
flows (Lanchon & Eckhaus 1964). For brief discussions of weakly non-parallel 
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theories, the reader is referred to Drazin & Reid (1982, p. 479) for the case of (wall) 
boundary-layer flows and to the survey paper by Ho & Huerre (1984) for the 
particular application to unbounded shear flow. The viscous term was ignored in the 
shear-layer investigations described in the latter reference. 

The solvability condition, or Fredholm alternative, for (D 11) gives 

where K~ can be interpreted as a local O(F)  wavenumber correction. As can easily be 
seen by inspection, the second-to-last term in b (cf. (D 13)) does not contribute in 
(D 14). Thus, as can be expected, a transverse shift in the mean streamwise velocity 
profile does not affect the linear stability problem neither to leading order nor in the 
correction for weak mean-flow divergence. (The boundary condition (D 7)  can then 
be exchanged with a more expedient condition from a computational point of view 
- the one actually used in this investigation was to prescribe f 5s 7 +- 00 .) 

The derivatives with respect to 5 of k and the eigenfunction 4 that are needed in 
the evaluation of b can be obtained either by the numerical differentiation of the 
results obtained for different 6 or by the procedure first suggested by Saric & Nayfeh 
(1975). In this latter procedure (D 10) is differentiated with respect to 6 to yield 

subject to ad/al+O as 171 + + 00, where 

The solvability condition for (D 15) gives 

and (D 15) can then be solved for &$/at. Both techniques were actually used here as 
an internal check of the accuracy of the calculations. 

The undisturbed mean-flow problem was integrated numerically by using central- 
difference approximations for the 7-derivatives, an implicit second-order scheme to 
march the solution forward in 5, and Newton iteration to solve the resulting 
nonlinear difference equations for each successive streamwise step. As the mean-flow 
solution was marched forward, the local linear eigenvalue and eigenfunction were 
determined using a shooting technique incorporating a forth-order Adams implicit 
method to integrate the local linear stability equation, and the weakly non-parallel 
eigenvalue correction was then calculated. 
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